|
@ -1,57 +1,108 @@ |
|
|
/* stylelint-disable */ |
|
|
/* stylelint-disable */ |
|
|
.bezierEasingMixin() { |
|
|
.bezierEasingMixin() { |
|
|
@functions: ~`( |
|
|
@functions: ~`(function() { |
|
|
function() {var NEWTON_ITERATIONS = 4; var NEWTON_MIN_SLOPE = 0.001; var SUBDIVISION_PRECISION |
|
|
var NEWTON_ITERATIONS = 4; |
|
|
= 0.0000001; var SUBDIVISION_MAX_ITERATIONS = 10; var kSplineTableSize = 11; var kSampleStepSize |
|
|
var NEWTON_MIN_SLOPE = 0.001; |
|
|
= 1 / (kSplineTableSize - 1) ; var float32ArraySupported = typeof Float32Array === 'function' |
|
|
var SUBDIVISION_PRECISION = 0.0000001; |
|
|
; function A (aA1, aA2) {return 1 - 3 * aA2 + 3 * aA1;} function B (aA1, aA2) {return 3 * |
|
|
var SUBDIVISION_MAX_ITERATIONS = 10; |
|
|
aA2 - 6 * aA1;} function C (aA1) {return 3 * aA1;} / / Returns x(t) given t, |
|
|
|
|
|
x1, |
|
|
var kSplineTableSize = 11; |
|
|
and x2, |
|
|
var kSampleStepSize = 1.0 / (kSplineTableSize - 1.0); |
|
|
or y(t) given t, |
|
|
|
|
|
y1, |
|
|
var float32ArraySupported = typeof Float32Array === 'function'; |
|
|
and y2. function calcBezier (aT, aA1, aA2) {return ( |
|
|
|
|
|
(A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1) |
|
|
function A (aA1, aA2) { return 1.0 - 3.0 * aA2 + 3.0 * aA1; } |
|
|
) * aT;} / / Returns dx/dt given t, |
|
|
function B (aA1, aA2) { return 3.0 * aA2 - 6.0 * aA1; } |
|
|
x1, |
|
|
function C (aA1) { return 3.0 * aA1; } |
|
|
and x2, |
|
|
|
|
|
or dy/dt given t, |
|
|
// Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2. |
|
|
y1, |
|
|
function calcBezier (aT, aA1, aA2) { return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT; } |
|
|
and y2. function getSlope (aT, aA1, aA2) {return 3 * A(aA1, aA2) * aT * aT + 2 * B(aA1, aA2) * |
|
|
|
|
|
aT + C(aA1) ;} function binarySubdivide (aX, aA, aB, mX1, mX2) {var currentX, |
|
|
// Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2. |
|
|
currentT, |
|
|
function getSlope (aT, aA1, aA2) { return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1); } |
|
|
i = 0; do {currentT = aA + (aB - aA) / 2.0; currentX = calcBezier(currentT, mX1, mX2) - aX; if |
|
|
|
|
|
(currentX > 0) {aB = currentT;} else {aA = currentT;}} while |
|
|
function binarySubdivide (aX, aA, aB, mX1, mX2) { |
|
|
(Math.abs(currentX) > SUBDIVISION_PRECISION && + +i < SUBDIVISION_MAX_ITERATIONS) ; return |
|
|
var currentX, currentT, i = 0; |
|
|
currentT;} function newtonRaphsonIterate (aX, aGuessT, mX1, mX2) {for |
|
|
do { |
|
|
(var i = 0; i < NEWTON_ITERATIONS; + +i) {var currentSlope = getSlope(aGuessT, mX1, mX2) ; if |
|
|
currentT = aA + (aB - aA) / 2.0; |
|
|
(currentSlope === 0) {return aGuessT;} var currentX = calcBezier(aGuessT, mX1, mX2) - aX; aGuessT -= |
|
|
currentX = calcBezier(currentT, mX1, mX2) - aX; |
|
|
currentX / currentSlope;} return aGuessT;} var BezierEasing = function (mX1, mY1, mX2, mY2) |
|
|
if (currentX > 0.0) { |
|
|
{if (!(0 <= mX1 && mX1 <= 1 && 0 <= mX2 && mX2 <= 1)) {throw new |
|
|
aB = currentT; |
|
|
Error('bezier x values must be in [0, 1] range') ;} / / Precompute samples table var sampleValues |
|
|
} else { |
|
|
= float32ArraySupported ? new Float32Array(kSplineTableSize): new Array(kSplineTableSize) ; if |
|
|
aA = currentT; |
|
|
(mX1 !== mY1 || mX2 !== mY2) {for (var i = 0; i < kSplineTableSize; + +i) {sampleValues[i] = |
|
|
} |
|
|
calcBezier(i * kSampleStepSize, mX1, mX2) ;}} function getTForX (aX) {var intervalStart = |
|
|
} while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS); |
|
|
0.0; var currentSample = 1; var lastSample = kSplineTableSize - 1; for |
|
|
return currentT; |
|
|
(; currentSample !== lastSample && sampleValues[currentSample] <= aX; + +currentSample) {intervalStart + |
|
|
} |
|
|
= kSampleStepSize;} --currentSample; / / Interpolate to provide an initial guess for t var |
|
|
|
|
|
dist = (aX - sampleValues[currentSample]) / |
|
|
function newtonRaphsonIterate (aX, aGuessT, mX1, mX2) { |
|
|
(sampleValues[currentSample + 1] - sampleValues[currentSample]) ; var guessForT = |
|
|
for (var i = 0; i < NEWTON_ITERATIONS; ++i) { |
|
|
intervalStart + dist * kSampleStepSize; var initialSlope = getSlope(guessForT, mX1, mX2) ; |
|
|
var currentSlope = getSlope(aGuessT, mX1, mX2); |
|
|
if (initialSlope >= NEWTON_MIN_SLOPE) {return newtonRaphsonIterate(aX, guessForT, mX1, mX2) ;} |
|
|
if (currentSlope === 0.0) { |
|
|
else if (initialSlope === 0) {return guessForT;} else {return binarySubdivide( |
|
|
return aGuessT; |
|
|
aX, |
|
|
} |
|
|
intervalStart, |
|
|
var currentX = calcBezier(aGuessT, mX1, mX2) - aX; |
|
|
intervalStart + kSampleStepSize, |
|
|
aGuessT -= currentX / currentSlope; |
|
|
mX1, |
|
|
} |
|
|
mX2 |
|
|
return aGuessT; |
|
|
) ;}} return function BezierEasing (x) {if (mX1 === mY1 && mX2 === mY2) {return x; / / linear} / / |
|
|
} |
|
|
Because JavaScript number are imprecise, |
|
|
|
|
|
we should guarantee the extremes are right. if (x === 0) {return 0;} if (x === 1) {return 1;} |
|
|
var BezierEasing = function (mX1, mY1, mX2, mY2) { |
|
|
return calcBezier(getTForX(x), mY1, mY2) ;};}; this.colorEasing = |
|
|
if (!(0 <= mX1 && mX1 <= 1 && 0 <= mX2 && mX2 <= 1)) { |
|
|
BezierEasing(0.26, 0.09, 0.37, 0.18) ; / / less 3 requires a return return '' ;} |
|
|
throw new Error('bezier x values must be in [0, 1] range'); |
|
|
) |
|
|
} |
|
|
() `; |
|
|
|
|
|
|
|
|
// Precompute samples table |
|
|
|
|
|
var sampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize); |
|
|
|
|
|
if (mX1 !== mY1 || mX2 !== mY2) { |
|
|
|
|
|
for (var i = 0; i < kSplineTableSize; ++i) { |
|
|
|
|
|
sampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
function getTForX (aX) { |
|
|
|
|
|
var intervalStart = 0.0; |
|
|
|
|
|
var currentSample = 1; |
|
|
|
|
|
var lastSample = kSplineTableSize - 1; |
|
|
|
|
|
|
|
|
|
|
|
for (; currentSample !== lastSample && sampleValues[currentSample] <= aX; ++currentSample) { |
|
|
|
|
|
intervalStart += kSampleStepSize; |
|
|
|
|
|
} |
|
|
|
|
|
--currentSample; |
|
|
|
|
|
|
|
|
|
|
|
// Interpolate to provide an initial guess for t |
|
|
|
|
|
var dist = (aX - sampleValues[currentSample]) / (sampleValues[currentSample + 1] - sampleValues[currentSample]); |
|
|
|
|
|
var guessForT = intervalStart + dist * kSampleStepSize; |
|
|
|
|
|
|
|
|
|
|
|
var initialSlope = getSlope(guessForT, mX1, mX2); |
|
|
|
|
|
if (initialSlope >= NEWTON_MIN_SLOPE) { |
|
|
|
|
|
return newtonRaphsonIterate(aX, guessForT, mX1, mX2); |
|
|
|
|
|
} else if (initialSlope === 0.0) { |
|
|
|
|
|
return guessForT; |
|
|
|
|
|
} else { |
|
|
|
|
|
return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize, mX1, mX2); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
return function BezierEasing (x) { |
|
|
|
|
|
if (mX1 === mY1 && mX2 === mY2) { |
|
|
|
|
|
return x; // linear |
|
|
|
|
|
} |
|
|
|
|
|
// Because JavaScript number are imprecise, we should guarantee the extremes are right. |
|
|
|
|
|
if (x === 0) { |
|
|
|
|
|
return 0; |
|
|
|
|
|
} |
|
|
|
|
|
if (x === 1) { |
|
|
|
|
|
return 1; |
|
|
|
|
|
} |
|
|
|
|
|
return calcBezier(getTForX(x), mY1, mY2); |
|
|
|
|
|
}; |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
this.colorEasing = BezierEasing(0.26, 0.09, 0.37, 0.18); |
|
|
|
|
|
// less 3 requires a return |
|
|
|
|
|
return ''; |
|
|
|
|
|
})()`; |
|
|
} |
|
|
} |
|
|
// It is hacky way to make this function will be compiled preferentially by less |
|
|
// It is hacky way to make this function will be compiled preferentially by less |
|
|
// resolve error: `ReferenceError: colorPalette is not defined` |
|
|
// resolve error: `ReferenceError: colorPalette is not defined` |
|
|